• OmnipotentEntity@beehaw.org
      link
      fedilink
      English
      arrow-up
      12
      ·
      4 days ago

      Anyway, to prove this is a metric we must prove that it satisfies the 4 laws of metrics.

      1. The distance from a point to itself is zero. 🍊 (🍎, 🍎) = 0

      This can be accomplished by simply observing that |🍎 (x) - 🍎 (x)| = 0 ∀x ∈ [a,b], so its sup = 0.

      2. The distance between any two distinct points is non-negative.

      If 🍎 ≠ 🍌, then ∃x ∈ [a,b] such that 🍎 (x) ≠ 🍌 (x). Thus for this point |🍎 (x) - 🍌 (x)| > 0 and the sup > 0.

      3. 🍊 (🍎, 🍌) = 🍊 (🍌, 🍎) ∀(🍎, 🍌) in our space of functions.

      Again, we must simply apply the definition of 🍊 observing that ∀x ∈ [a,b] |🍎 (x) - 🍌 (x)| = |🍌 (x) - 🍎 (x)|, and the sup of two equal sets is equal.

      4. Triangle inequality, for any triple of functions (🍎, 🍌, 🍇), 🍊 (🍎, 🍌) + 🍊 (🍌, 🍇) ≥ 🍊 (🍎, 🍇)

      For any (🐁, 🐈, 🐕) ∈ ℝ³ it is well known that |🐁 - 🐕| ≤ |🐁 - 🐈| + |🐈 - 🐕|, (triangle inequality of absolute values).

      Further, for any two functions 🍍, 🍑 we have sup({🍍 (x) : x ∈ [a, b]}) + sup({🍑 (x) : x ∈ [a, b]}) ≥ sup({🍍 (x) + 🍑 (x) : x ∈ [a, b]})

      Letting 🍍 (x) = |🍎 (x) - 🍌 (x)|, and 🍑 (x) = |🍌 (x) - 🍇 (x)|, we have the following chain of implications:

      🍊 (🍎, 🍌) + 🍊 (🍌, 🍇) = sup(🍍 (x) : x ∈ [a, b]}) + sup({🍑 (x) : x ∈ [a, b]}) ≥ sup({🍍 (x) + 🍑 (x) : x ∈ [a, b]}) ≥ sup({🍎 (x) - 🍇 (x)| : x ∈ [a, b]) = 🍊 (🍎, 🍇)

      Taking the far left and far right side of this chain we have our triangles inequality that we seek.

      Because 🍊 satisfies all four requirements it is a metric. QED.

      QED stands for 👸⚡💎, naturally