Asphalt used on road surfaces are byproducts from fossil fuel. With the ultimate goal of eliminating the use of fossil fuel to combat climate change, are there any good alternatives for road surfaces? I don’t think I’ve ever heard of a viable replacement of asphalt in the works, or even a plan to replace it in any environmental discussions before. At least, not enough for me to notice.

Extented question would be: what are some products derived from fossil fuel that are used in everyday life, but still lack viable alternatives you don’t see enough discussions about?

      • gregoryw3@lemmy.ml
        link
        fedilink
        English
        arrow-up
        21
        ·
        1 year ago

        Also another factor is heavy vehicles. I don’t have the article or video, but I remember hearing that a majority of road damage comes from heavy vehicles. I believe the video was also comparing roads to Rome roads where it wasn’t that they were built better (although volcanic ash did help) it’s that horses and people are way less heavy than the 3,000+lb vehicles we have going almost 24/7.

        Less road damage would mean less containments/pollution and less need for repair. So the future might be seeing more public transit and more rail transit for materials/products which would mean wherever we need to add more road or re do sections we would replace it with the greener option or potential normal asphalt since it wouldn’t need to be touched for another 20,30,40+ years.

        • fubo@lemmy.world
          link
          fedilink
          arrow-up
          21
          ·
          1 year ago

          that a majority of road damage comes from heavy vehicles

          Specifically, wear and tear on the road surface scales with the fourth power of vehicle weight.

          As a worked example, this means that if we compare a 3-ton cargo van and a 1½-ton sedan, the cargo van weighs twice as much as the sedan, but it does sixteen times as much damage to the road.

          https://en.wikipedia.org/wiki/Fourth_power_law

          • Jesus_666@feddit.de
            link
            fedilink
            arrow-up
            4
            ·
            1 year ago

            Axle load, actually. In theory a 1.5-ton car with two axles and a 3-ton truck with four equally loaded axles would cause the same amount of damage. A 1-ton unicycle would cause more damage than the truck.

            Note, though, that this is a rule of thumb. A 50-ton tank is still a 50-ton tank even if you manage to make it have fifty tiny axles. But for fairly average motor vehicles under fairly average conditions it’s close enough to be useful for planning.

            • haydng@lemmy.nz
              link
              fedilink
              arrow-up
              3
              ·
              1 year ago

              Surely that’s damage-per-axle? So it’d be two 1.5-ton cars to match the trucks 4 axles

  • dgmib@lemmy.world
    link
    fedilink
    English
    arrow-up
    45
    ·
    1 year ago

    Climate change isn’t caused by just using fossil fuels to make a product, it’s caused by burning fossil fuels releasing greenhouse gasses, (primarily carbon dioxide and methane), into the environment.

    Asphalt is a problematic material, but not so much because it’s made from oil. It’s problematic because we burn fossil fuels to harvest the raw crude and to generate the energy needed to refine crude into asphalt. The carbon in the asphalt itself remains sequestered there and doesn’t contribute to the greenhouse effect as long as it isn’t burned later.

    If we figured out how to extract crude and generate the vast amount of energy needed to manufacture asphalt without actually burning fossil fuels we’d eliminate the vast majority of asphalt’s impact on climate change.

    In fact it’s been shown in a lab that it’s possible to make asphalt from CO2. It’s currently cost prohibitive to do so, but in theory asphalt could be part of the solution to climate change.

    Now Asphalt does have other environmental issues, like leaching toxic chemicals into the soil and water table and the fact that it’s usually black which absorbs more the sun’s radiation than almost anything else which would reflect more of the sun’s energy back out into space. But those problems aren’t necessarily solved by using non-petroleum based bioasphault, nor are they unsolvable with bitumen based asphalt.

    About 20% of a barrel of oil gets made into products like plastics or foam, that’s not what’s causing climate change. What causing climate change is the 80% that gets refined and burned for cheep energy. So it’s less “Just stop oil” and more “Just stop burning oil”

    • Tnaeriv@sopuli.xyz
      link
      fedilink
      arrow-up
      11
      ·
      1 year ago

      That’s not to mention the reusability of asphalt:

      Regarding the circular economy, the data from reporting countries showed that in such countries, 72% of the reclaimed asphalt available for the industry was re-used, 25% recycled and only 3% used on unknown applications or put to landfill.

      Source

    • CanadaPlus@lemmy.sdf.org
      link
      fedilink
      arrow-up
      5
      ·
      edit-2
      1 year ago

      Asphalt is a problematic material, but not so much because it’s made from oil. It’s problematic because we burn fossil fuels to harvest the raw crude and to generate the energy needed to refine crude into asphalt. The carbon in the asphalt itself remains sequestered there and doesn’t contribute to the greenhouse effect as long as it isn’t burned later.

      Not to mention the lighter fractions will include things like gasoline, and once you have gasoline it’s oh-so-tempting to burn it.

      Honestly I doubt the emissions just from heating it in a fractionating tower are all that significant themselves, even if they’re not using renewables to do it.

    • Tar_Alcaran@sh.itjust.works
      link
      fedilink
      arrow-up
      2
      ·
      1 year ago

      It currently takes about 3 to 6 cubic meters of gas to make 1 ton of asphalt. It doesn’t really matter if that’s new or recycled, and doesn’t include mining and transporting the materials.

  • PonyOfWar@pawb.social
    link
    fedilink
    arrow-up
    13
    ·
    edit-2
    1 year ago

    I do like the brick roads they often have in places like the Netherlands. Example

    Not sure how they compare in environmental impact though.

    • falkerie71@sh.itjust.worksOP
      link
      fedilink
      English
      arrow-up
      10
      ·
      1 year ago

      Aren’t brick roads bumpy to drive on? It may be fine to put in housing areas where cars drive slow normally, but I imagine it would be a pain in the ass (literally, lol) and dangerous to drive on on high speed roads.

      • PonyOfWar@pawb.social
        link
        fedilink
        arrow-up
        12
        ·
        edit-2
        1 year ago

        Sure, you wouldn’t put them on highways. But I’d like to have less of those anyway. They’re decent for cycling or driving at lower speeds.

        • strawberry@artemis.camp
          link
          fedilink
          arrow-up
          6
          ·
          1 year ago

          dunno if I’d call it decent. bumps will wear out suspension components prematurely, meaning they’ll have to be replaced more often. so more metal and rubber being produced. is it enough to make brick not worth it? idk. also worth noting that asphalt is far grippier than brick. more grip = safer

          • PonyOfWar@pawb.social
            link
            fedilink
            arrow-up
            6
            ·
            1 year ago

            I think you really overestimate the bumpiness of those kind of roads. They’re not like medieval cobbleroads.

            • ormr@reddthat.com
              link
              fedilink
              arrow-up
              8
              ·
              1 year ago

              We have all kinds in my city: Medieval cobblestone, brick roads and asphalt. As a cyclist I have to tell you that I hate all kinds of brick roads that I have encountered. Even when they’re not the horrible middle age version, they will often get deformed by roots or depression of the ground quite rapidly, making them even more bumpy. For this reason I think, I saw in Sweden in an otherwise bricky city center that they had a narrow asphalt lane on the side of the road for cyclists. I was just amazed that someone would spend that much thought into what’s great for cyclists. As a cyclist I really love asphalt :D

              • PonyOfWar@pawb.social
                link
                fedilink
                arrow-up
                2
                ·
                1 year ago

                they will often get deformed by roots or depression of the ground quite rapidly

                That’s true, but more of a maintenance issue IMO. Brick roads do have the advantage that workers can just take some of the bricks out, fix whatever is wrong underneath and put the same bricks back on. Can’t really do that with asphalt, which will eventually deform as well.

            • Instigate@aussie.zone
              link
              fedilink
              arrow-up
              1
              ·
              edit-2
              1 year ago

              I think you underestimate how small differences have large results when we’re talking about nationwide or population-wide issues. If there are a million cars on the road and this change makes suspensions wear 5% faster, then every X years (however long it would usually take for them to wear) there are an extra 50,000 cars needing replacements. That’s not an insignificant amount. Scale that up to larger countries that have tens or hundreds of millions of cars and the result gets even larger.

              Small differences make large impacts. 1.5°C average global warming is having disastrous effects on the environment and our capacity to thrive. COVID-19 has a Case Fatality Rate of around 1% (depending on country) and it has caused nearly 7 million deaths - more than the amount of Jewish people murdered in the Holocaust and similar to the Holodomor.

              • GissaMittJobb@lemmy.ml
                link
                fedilink
                arrow-up
                1
                ·
                1 year ago

                Consider the fact that you’re unlikely to make a trip to the other side of the world if it weren’t for the fact that airplanes exist and they cover the distance very fast.

                Higher speeds enable different trips to happen - the speed changes the types and distances of transportation that happen.

        • falkerie71@sh.itjust.worksOP
          link
          fedilink
          English
          arrow-up
          1
          ·
          1 year ago

          Hmm, I may have. I admit I have never driven on brick roads before (cobblestone roads yes), so more input on people’s experience and long term observations with these would be great.

          Do you think it’s viable in situations like high speed driving? Other potential problems?

          • HardlightCereal@lemmy.world
            link
            fedilink
            English
            arrow-up
            1
            ·
            1 year ago

            Netherlands and Australia use brick in places where we want cars to slow down. Drivers automatically slow their speeds on brick roads. They’re fine to cycle on.

                • falkerie71@sh.itjust.worksOP
                  link
                  fedilink
                  English
                  arrow-up
                  2
                  ·
                  1 year ago

                  That just means it feels uncomfortable and dangerous to drive fast on because it rumbles more, so they slow down.

                  which makes it feel faster.

                  I don’t think that’s how it works…

  • PowerCrazy@lemmy.ml
    link
    fedilink
    arrow-up
    5
    ·
    edit-2
    1 year ago

    The green alternative to Asphalt existed before Asphalt in the form of Rail Roads. “Green Asphalt” also exists and is currently used for walking trails and biking trails, though it consists of recycled plastic and rubber, so technically it isn’t “asphalt.”

  • centof@lemm.ee
    link
    fedilink
    English
    arrow-up
    2
    ·
    1 year ago

    Modern farm fertilizers are all made with ammonia which is produced with natural gas. Apparently Yara,a Norwegian company, is trying to replace the fossil fuel with solar power. Source

    Of course you could also use manure or compost as fertilizer, but only some of the few small farmers would probably be willing to since it is harder and therefore more costly.

  • CanadaPlus@lemmy.sdf.org
    link
    fedilink
    arrow-up
    2
    ·
    edit-2
    1 year ago

    Hmm. Well, the obvious choice would be some kind of tar. Someone mentioned that oil extraction is not as bad if you don’t burn it, too. What about a plastic blend?

    Extended question: One thing I think of is all the various chemical building blocks that go into synthetic things, like drugs. As I understand it, right now we pull up crude, and then repeatedly process it until we’ve split it into 1000s of individual component molecules. Pick a chemical, go to the “production” section of the Wikipedia, click on a component and repeat; you’ll probably find one.

    There’s approaches to making individual building blocks green ways, but I don’t think there’s a fallback for cases where a specific commodity chemical has no alternative. What we really need is a way to make a similar blend of things from pyrolysis of biomass. I assume somebody is working on it.

      • CanadaPlus@lemmy.sdf.org
        link
        fedilink
        arrow-up
        2
        ·
        1 year ago

        That’s true, but AFAIK asphalt roads don’t tend to produce a fine dust (rather, the tires and mufflers do), so there should be some kind of plastic resin that would wear a similar way.

  • morgan423@lemmy.world
    link
    fedilink
    English
    arrow-up
    1
    ·
    1 year ago

    Solar Roadways has been trying to make it work for a while, but I think they will end up being a project better geared for driveways or parking lots or bicycle highways rather than replacing asphalt roads, just based on the enormous amount of issues they’ve had in the past in trying to shield and protect the lighting elements.

    It could still do a lot of good even in the more limited applications, though, so I’m still hoping for their eventual success, even if it ends up being on a smaller scale than what their initial goal was.