For several years I’ve used a Raspberry Pi Zero for sensors, camera & door motor control which opens & closes a chicken coop door. The Rpi & controller is 5v, the motor is 12v. This has been powered by around 50’ of extension cord, but the elements are beginning to weather the cord & we also need to move the chickens further away from our mains. I think it is time to implement solar. I aspire to assemble a PV, battery, & converter system which:

  • Uses an off-the-shelf 12v PV panel (30w or so)
  • Uses LiFePO cells for heat resiliency & stability
  • Provides both 12v & 5v power
  • Isn’t proprietary; uses standard, easily-sourced components… unless it meets specs perfectly & isn’t terribly expensive.
  • Minimal power draw; at most 2 amps @ 12v for 10 seconds twice daily.

Does anyone have suggestions regarding this configuration, know of a post, blog, or video which does something similar, or is willing to ID components you’d recommend for this project?

  • walden@sub.wetshaving.social
    link
    fedilink
    arrow-up
    3
    ·
    edit-2
    10 months ago

    30w might not be sufficient to run the pi with a camera, etc., especially taking into account cloudy days and whatnot. Do you live somewhere particularly sunny?

    I’d start off with a single 100w panel at a minimum. That’s what I have, and in the winter (right now) it maxes out at around 45 watts, and only for a couple hours a day. The rest of the day it’s a trickle.

    Does the Pi need to be on 24/7? Certain charge controllers allow you to implement a schedule for the “load” terminals. You’ll want something like this to run the Rpi.

    Does it get below freezing where you are? LiFePO4 get damaged if you charge them below freezing. In that case a deep-discharge rated Lead Acid battery might be better.

    I just built out a solar setup for my shed. It has different needs than yours, but I’ll be running a Pi 3B+ 24/7 and I think my setup should handle that ok, even in the winter months.

    A 100w panel should be about $100-120USD. I recommend a nice solar charge controller – something like the Victron SmartSolar 100/20 at a minimum (100/30 would be better for adding another panel or 2 in the future). Watch some YouTube on why Victron is great, especially if you’re a nerd and want to check the status of stuff from your house via bluetooth.

    For a panel, charger, and battery, you’re in the $400 range. Try and use some spare wire you have laying around – 12 gauge should be fine. If you go cheaper and get a 30w panel and a cheapo charge controller from AliExpress (nothing wrong with that, just fewer features), you might end up spending more in the future if it’s not sufficient.

    • MossyHabitat@lemmy.worldOP
      link
      fedilink
      arrow-up
      1
      ·
      10 months ago

      Thanks for the reply. Do you have stats on how many watt hours you collect from the 100w panel in the Dec/Jan (assuming you’re in the northern hemisphere), and how those stats vary on overcast days vs sunny? I’m around 37°n and relatively sunny in the winter, except for a gloomy week here or there - an adequate battery buffer will be needed for those days, and the capacity can be shifted to ventilation fans in the summer.

      While it does freeze here (occasionally down to 0° F) the battery will be inside the chicken coop where the temp has always remained above freezing. Initially my concern with lead acid was the risk of gassing into the birds’ airspace, which is why I’m drawn to the LiFePO4 chemistry. Victron does seem great for heavier(medium)-duty scenarios like sheds or RVs.

      The pi is a zero, which pulls about 25-33% the current of a 3b, and I’ve been able to run it off a 10,000 mah battery bank for over 24 hours. It is beneficial to have it running continuously during daylight hours only, aside from logging weather lows, but I can’t think of a practical method to shut it down & bring it online automatically - at that point it’d probably make more sense to switch to an ESP32 device feeding data to a primary server inside the house.

      • Frater Mus@lemmy.sdf.org
        link
        fedilink
        English
        arrow-up
        3
        ·
        edit-2
        10 months ago

        Do you have stats on how many watt hours you collect from the 100w panel in the Dec/Jan (assuming you’re in the northern hemisphere),

        You can model average insolation (and use that to extrapolate average harvest) by month using tools like PVwatts. Here’s a walkthrough.

        Using Bowling Green, KY as an example since it’s on the 37th. 100w of flatmounted panel on an MPPT solar charge controller would average:

        Solar wattage	100
        Month	Daily Wh Avg
        Jan	168
        Feb	249
        Mar	331
        Apr	426
        May	513
        Jun	598
        Jul	555
        Aug	506
        Sep	396
        Oct	305
        Nov	201
        Dec	156
        Average	367
        
        

        Derate those yields by ~18% if using PWM. <– rule of thumb, not gospel

        if we are on the west coast instead, here’s Santa Cruz, California:

        Solar wattage	100
        Month	Daily Wh Avg
        Jan	206
        Feb	286
        Mar	386
        Apr	519
        May	582
        Jun	642
        Jul	605
        Aug	542
        Sep	447
        Oct	349
        Nov	245
        Dec	183
        Average	416
        

        and how those stats vary on overcast days vs sunny?

        The figures above are daily averages, including normal weather patterns and are how we size our systems. But for the sake of curiosity/understanding, my observations have been that if my clear-day harvest is X then overcast is 0.6X, bright overcast is 0.7X and dark/rainy is 0.05-0.10X. Cloud-edge effect and other reflective phenomena can result in harvest >1X.

        While it does freeze here (occasionally down to 0° F) the battery will be inside the chicken coop where the temp has always remained above freezing.

        A battery warming solution could be implemented for $20 (warming pads, 12v temp controller).

        • walden@sub.wetshaving.social
          link
          fedilink
          arrow-up
          1
          ·
          edit-2
          10 months ago

          Not OP but this is really neat. Thanks.

          Over the past few days my system has been severely under performing in relation to these calculations. For January it says 290 Wh per day, but I’m only seeing 50. I do have a lot of trees, so probably some shading… maybe even a lot of shading.

          Jan	290.3
          Feb	392.9
          Mar	387.1
          Apr	400.0
          May	387.1
          Jun	400.0
          Jul	419.4
          Aug	387.1
          Sep	400.0
          Oct	322.6
          Nov	300.0
          Dec	290.3
          
      • walden@sub.wetshaving.social
        link
        fedilink
        arrow-up
        2
        ·
        edit-2
        10 months ago

        I’m around 41°N (southern New England). I installed a Victron SmartSolar 30A just within the past week, so the stats I have are limited. The best I’ve seen so far was yesterday where I got 50Wh. Most other days it has been 40Wh. Today is a bit cloudy so I’ll try and update you on what I get.

        Edit: I made a spreadsheet to sort of figure out what I can accomplish with 50Wh – and it’s not much! If the Pi draws 2.5 watts, the solar will only cover 20 hours not including any other electricity I want to use.

        This time of year has the shortest days, so if I can bump it to 60+ Wh a day that will be better. My property also has the downside of a hill to the west, so it makes direct sunlight even shorter. I’ve already ordered a 2nd 100w panel from Harbor Freight so that will help.