The US National Ignition Facility has achieved even higher energy yields since breaking even for the first time in 2022, but a practical fusion reactor is still a long way off
It’s not efficient, a huge amount of it gets diffused or absorbed
The amount that’s left over though is more than enough, especially with today panels which only convert a very small percentage of that remaining energy.
As the panels improve even more they’ll be a very large energy surplus, even with how much solar light actually gets through the atmosphere.
Did you understand the person you respond to as saying its inefficient because the sun shines in other directions than the array proposed?
I’m pretty sure the person talked specifically about the beam from the array to earth being inefficient.
It’s not efficient, a huge amount of it gets diffused or absorbed
It doesn’t need to be efficient. Capture all the light that hits earth for 5 minutes and that’s the world energy demand for a year.
How would you store it though?
solar george
Solar Robert
Stéphane Robert
Usually In plants and algae.
The amount that’s left over though is more than enough, especially with today panels which only convert a very small percentage of that remaining energy.
As the panels improve even more they’ll be a very large energy surplus, even with how much solar light actually gets through the atmosphere.
Wow, you’re right! We should just build a Dyson sphere around the sun. 100% efficiency achieved. What could possibly go wrong?
Did you understand the person you respond to as saying its inefficient because the sun shines in other directions than the array proposed?
I’m pretty sure the person talked specifically about the beam from the array to earth being inefficient.
I was joking, but apparently nobody picked up on my snarky sarcasm. Disregard.
Where did I say that?