Tesla speculated electricity from thin air was possible – now the question is whether it will be possible to harness it on the scale needed to power our homes

    • Devccoon@lemmy.world
      link
      fedilink
      English
      arrow-up
      42
      ·
      1 year ago

      10 kWh per day from a washing machine sized cube is nothing to sneeze at. Whether the humidity to keep it powered consistently is achievable and the maintenance to keep it running is sensible and the cost of building up enough of this stuff to output that level of energy can be commercially viable - that’s the big question.

        • Devccoon@lemmy.world
          link
          fedilink
          English
          arrow-up
          6
          ·
          1 year ago

          Is it wrong, though? Hours and days cancel out to give you the energy production rate (10,000 watt*hours/24 hours or just under 420 watts).

      • hitwright@lemmy.world
        link
        fedilink
        English
        arrow-up
        8
        ·
        1 year ago

        Zirconium costs around 30 dollars per kg. That “washing machine” gonna cost around 60k on materials alone. I’m guessing it might be great for watches and other low power devices, but it likely won’t power homes as is.

        • Riskable@programming.dev
          link
          fedilink
          English
          arrow-up
          2
          ·
          1 year ago

          Nah… The “disc” isn’t 100% zirconium. I don’t know what it’s made out of but the zirconium part is just the nanowires which would likely be some teeny tiny percentage of the overall weight. If it’s like silicon ICs (e.g. the CPU inside your computer) zirconium would probably account for less than 1% (probably 0.1 or even 0.001%) of the overall weight.

          99% of it likely to be “packaging” which is tiny copper wires carefully connected to the zirconium (probably via an intermediary material) to transmit and combine the power along with loads of insulating materials and lots and lots of high temperature plastic (so it can survive short bursts of soldering).

          It’s a prototype and may not like getting very hot so maybe they didn’t use normal soldering methods and might have used conductive adhesives or similar crimping or vacuum welding or other fancy ways of connecting things that labs have access to for such things.

      • weedazz@lemmy.world
        link
        fedilink
        English
        arrow-up
        4
        ·
        1 year ago

        Down here in Miami I feel like I’ve been drinking the air instead of breathing it the last month or so! I definitely think there will be climates very well suited for this technology

  • Bilb!@lem.monster
    link
    fedilink
    English
    arrow-up
    29
    ·
    1 year ago

    Farts have to be pretty humid, right? I look forward to being able to charge my cellular telephone by simply expelling gas from my rear using specially made underwear.

  • astral_avocado@lemmynsfw.com
    link
    fedilink
    English
    arrow-up
    13
    ·
    1 year ago

    The Lyubchyks estimate that the levelised cost of energy – the average net present cost of electricity generation for a generator over its lifetime – from these devices will indeed be high at first, but by moving into mass production…

    So next to the fact that these nanotubes will clog with bacteria/particles from the air, and that they’d likely solve it with another device that completely purifies and pushes the air, I’m not hopeful.

  • HeartyBeast@kbin.social
    link
    fedilink
    arrow-up
    9
    ·
    1 year ago

    It sounds interesting, but I don’t quite get where the energy comes from - it sounds like they are harvesting the kinetic energy from the water molecules? So what is the net effect when scaled up? Does the device get very cold? an ELI5 would be appreciated

  • ramblechat@lemmy.world
    link
    fedilink
    English
    arrow-up
    9
    ·
    1 year ago

    I hope one day we will be able to charge devices without plugging them in - even if the amount of charge is small, it might be able to trickle charge all the time.

  • Aesthesiaphilia@kbin.social
    link
    fedilink
    arrow-up
    7
    ·
    1 year ago

    I just want us to dehumidify the whole South

    I don’t know how humid this air has to be, but summer in Georgia hits 100% humidity fairly regularly so it’ll definitely work

  • ∟⊔⊤∦∣≶@lemmy.nz
    link
    fedilink
    English
    arrow-up
    7
    ·
    1 year ago

    Dam. I really hope this turns into a thing. Something like this that works and is cheap to produce will be so beneficial.

    • SomeoneSomewhere@lemmy.nz
      link
      fedilink
      English
      arrow-up
      18
      ·
      1 year ago

      The issue is the amount of energy produced (minuscule) and the requirement for very humid air. It’s also likely that the device needs to be colder than ambient temperature if I’ve got my thermodynamics right, so removing heat might be necessary, obliterating any gains and turning it into a dehumidifier that produces a small amount of waste electricity.

      It might be another option in the pile of ‘energy harvesting’ solutions, where you need microwatts to miliwatts to power devices like remote temperature sensors, to avoid fitting ten-year lithium batteries. It doesn’t seem likely to go beyond that.

      • machinin@kbin.social
        link
        fedilink
        arrow-up
        1
        ·
        1 year ago

        I don’t believe it requires any temperature differential. It looks like it works by using something similar to static electricity.

  • Tatters@feddit.uk
    link
    fedilink
    English
    arrow-up
    5
    ·
    1 year ago

    It doesn’t say how humid the air needs to be. Will it still work if humidity is low?

    • sab@kbin.social
      link
      fedilink
      arrow-up
      5
      ·
      1 year ago

      There’s always some humidity, so I guess in the end it depends entirely on how efficient they can make this technology. It’s probably a bit too early to say.

      That said, if you live in a tent in the Sahara you probably shouldn’t postpone investing in solar panels over this.

  • DashboTreeFrog@lemmy.world
    link
    fedilink
    English
    arrow-up
    3
    ·
    1 year ago

    I imagine this having practical usage in maybe keeping things like sensors working in a plumbing or caving kinda context considering the low power currently created. Awesome!

  • Leyla :)@lemmy.fmhy.ml
    link
    fedilink
    English
    arrow-up
    2
    ·
    1 year ago

    It doesn’t matter how complex we get, it always breaks down to moving water in a varied state of matter.