It’s time to be honest about Musk’s vacuum tube to nowhere

  • blazera@kbin.social
    link
    fedilink
    arrow-up
    5
    ·
    11 months ago

    Right, that was the whole point. I think folks arent appreciating air resistance. The ISS is an example of what vehicles are capable of without it. Speeds incomparable to anything on earth, with little fuel usage. Its the largest source of inefficiency in travel. And the engineering science of reducing it is wholesale a scam for people.

    • michaelmrose@lemmy.world
      link
      fedilink
      English
      arrow-up
      16
      ·
      11 months ago

      The ISS travels at a constant speed in relation to the earth. People have to get on and off a train

      • blazera@kbin.social
        link
        fedilink
        arrow-up
        4
        ·
        11 months ago

        Yes, acceleration is a thing, but trains a)reach a top speed and spend a lot of fuel maintaining it, and b)reaches much, much lower top speeds, with any effort to increase it requiring exponentially more fuel to reach and maintain. Air resistance is an absurdly important factor to travel efficiency.

      • blazera@kbin.social
        link
        fedilink
        arrow-up
        3
        ·
        11 months ago

        Yeah i seen the rest of it, i was short on time. Thats not how engineering tubes works, we use them because you can add as much length as you want, the balancing of pressure forces occurs cross sectionally. A 2 foot pipe carrying 100 psi is experiencing the same stresses as a 2 mile pipe at 100 psi. You might as well be adding a /s to the idea of distributing water through pipes.

        • prime_number_314159@lemmy.world
          link
          fedilink
          English
          arrow-up
          2
          ·
          11 months ago

          Very long pipes use expansion/contraction sections that may not be possible for a vacuum sealed system that has to be incredibly straight to allow the passage of a train, and can flex pretty significantly for earthquakes, seasonal temperature changes, etc.

          • blazera@kbin.social
            link
            fedilink
            arrow-up
            3
            ·
            11 months ago

            Earthquakes keep getting brought up as if they’re not devastating to absolutely everything we already use. What if an earthquake hits a regular train? Or a bridge, or a house. only a vacuum tube is susceptible to earthquakes.

            • prime_number_314159@lemmy.world
              link
              fedilink
              English
              arrow-up
              1
              ·
              11 months ago

              If any part of the hundreds of miles of tube suddenly stops being a vacuum chamber, every train all along the tube is going to be hit by air rushing in, at the speed of sound, with all the turbulence that implies, while its already moving at full speed. It might be possible to engineer a capsule that will keep the people inside alive when that happens, but it is not at all the same as e.g. rail, where “stop moving fowards” depletes essentially all the energy in the system.

            • prime_number_314159@lemmy.world
              link
              fedilink
              English
              arrow-up
              1
              ·
              11 months ago

              The major strategy on CWR is pretensioning, but there are also multiple kinds of expansion joints used in different circumstances. I’m not saying it’s impossible to do the same with a vacuum chamber, but I am saying there’s no simple reliable answer, and certainly no answer so obvious and bulletproof that it doesn’t even require testing before you could start construction.

              Elon Musk either didn’t know or didn’t care that his company wasn’t doing the required engineering and testing to make a real functioning hyperloop.

    • BoscoBear@lemmy.sdf.org
      link
      fedilink
      English
      arrow-up
      2
      ·
      11 months ago

      I think a better example is airplanes. You run at high altitudes to increase efficiency due to reduced atmosphere.