Elon Musk says ‘we dug our own grave’ with the Cybertruck as he warns Tesla faces enormous production challenges::Tesla CEO Elon Musk said Wednesday that the Cybertruck’s unique design means the company faces immense challenges in scaling production.

    • dragontamer@lemmy.world
      link
      fedilink
      English
      arrow-up
      67
      ·
      edit-2
      2 years ago

      I’ve been doing PCB-board design recently. Here’s the manufactuering specs: https://www.digikey.com/en/resources/dkred

      So that’s 0.13mm tolerances to my printed-circuit board. Or 130 microns.


      Current leading theory is that Elon Musk is such an ignorant dumbass that he doesn’t know the difference between mils and microns, despite running a car company / manufacturing firm. Give that a thought. Even then, 10-mils tolerance is near this PCB design, an object that’s only a few inches in size. Cars are much larger and normally should be built to much wider tolerances than a fucking PCB board.

      • Red_October@lemmy.world
        link
        fedilink
        English
        arrow-up
        25
        ·
        2 years ago

        It’s almost like Elon Musk is a complete fucking moron and not an Engineer. The wanker has never actually designed a thing in his life. He just tells other people to design something, or buys an existing company, then struts around like he thinks he’s the smartest thing around.

      • Rentlar@lemmy.ca
        link
        fedilink
        English
        arrow-up
        25
        ·
        2 years ago

        If he said <10 mils, I’d might have bought the explanation that Elon actually meant millimetres. Micron is a very specific metric-based unit which to Elon might have been trying to use like a buzzword.

        The moral of the story is don’t say stupid engineering stuff if you don’t want engineers to laugh at you.

        • macrocephalic@lemmy.world
          link
          fedilink
          English
          arrow-up
          33
          ·
          2 years ago

          And 10 microns at what temperature? Because on something the size of a car, made of mixed materials, thermal expansion of less than a degree is going to blow that figure.

          They couldn’t apply paint to a tolerance of 10microns.

          • Rentlar@lemmy.ca
            link
            fedilink
            English
            arrow-up
            2
            ·
            2 years ago

            Yeah and that wouldn’t be too bad either… still expensive but not completely unrealistic for ALL parts of a car.

            • PsychedSy@sh.itjust.works
              link
              fedilink
              English
              arrow-up
              3
              ·
              2 years ago

              Kinda unreasonable for the number of cast parts most cars use, but for machined surfaces it shouldn’t be too bad.

      • polle@feddit.de
        link
        fedilink
        English
        arrow-up
        3
        ·
        2 years ago

        I recently listened to a podcast about musk which was more on the anti side. The podcast had some parts about spacex and musks own work ethics, which told more of a story that he actually has some insights and knowledge and was a insane workoholic. Which shifted my perception of him. He isn’t dumb, he is a really good conman.

    • kautau@lemmy.world
      link
      fedilink
      English
      arrow-up
      28
      ·
      2 years ago

      Lmao “if Lego and soda cans can do this, so can we.” At least he found materials similar to his existing vehicle build quality

    • piecat@lemmy.world
      link
      fedilink
      English
      arrow-up
      18
      ·
      2 years ago

      “At this point I think I know more about manufacturing than anyone currently alive on Earth.”

      • dragontamer@lemmy.world
        link
        fedilink
        English
        arrow-up
        12
        ·
        edit-2
        2 years ago

        Bullshit.

        The thermal coefficient of expansion of say… Aluminum is 23.

        That means that when a 1 meter piece of Aluminum rises from 20C to 21C, just one degree Celsius, it grows by 23 microns.

        Your 3D printer is not a temperature controlled precision instrument. Your tolerances are no where close to 10 microns let alone 1 micron.

        There are micron-level precise instruments in the engineering world. They all come with temperature characteristics because thermal expansion is a bitch. 3D printers that literally heat up hundred degrees and cools down regularly literally can’t be this precise, the heat alone wrecks your precision.

          • dragontamer@lemmy.world
            link
            fedilink
            English
            arrow-up
            6
            ·
            edit-2
            2 years ago

            Your resin printer does not have the resolution of 1/15th the size of a damn white blood cell. Your blood is 15 microns per cell or so. Red blood cells are smaller at around 7 microns.

            You, and Elon, have confused your units quite significantly. I’ve given you the opportunity to see your error by reminding you the difference between thou, mils, mm, and microns. But apparently you haven’t gotten the hint yet.

            My university created micrometer-sized balls, gears, and other such devices. They’re called MEMS and are really cool. They’re not made with 3d printers but instead lithography (same technology as computer chips, because they’re so small its easier to make through lithography). You’ve confused your units and its clear based off of how you’ve been talking. Take a step back, and double-check the difference from thou, mil, mm, and microns.

              • dragontamer@lemmy.world
                link
                fedilink
                English
                arrow-up
                4
                ·
                edit-2
                2 years ago

                What is the diameter of A PHOTON? And don’t forget to answer ignorantly, in a condescending i-know-more-than-my-betters tone. No, seriously - look it up. You clearly don’t know.

                Thanks for giving me more absurd examples. Your UV light is a 400nm wavelength or so. Or roughly 1/3rd a micron. The fucking wavelength of your curing light.

                Now get outta here with your attempts at pretending that your $200 UV printer has the level of accuracy of three fucking wavelengths of the light it’s using.

                The size of the color red? That’s 700nm wavelength, or 0.7 microns. Your resolution that you’re printing here is no where close to the size of red-light photons.

                zero-width photons

                Oh, so you don’t know how light works either. Good grief man… light has a size and you’re running up against the size limitation of the light itself. Especially because I know for a fact that these UV Printers are NOT using lasers, so you have no way to actually line up all the photons to hit the same location since their wavelengths are all unaligned.

                In any case, car parts are not made at scales comparable to the wavelength of infrared light (ie: the “size” of a infrared-light photon).

                  • AlotOfReading@lemmy.world
                    link
                    fedilink
                    English
                    arrow-up
                    5
                    ·
                    2 years ago

                    Wavelength has a very direct impact on the resolution you can print because it’s an optical system. Under perfect conditions, it’ll be diffraction limited, which is typically anywhere from several hundred nm to tens of microns. That’s an ideal system though, you’re actually going to be getting a dimensional accuracy somewhat above that in practice, probably tens to hundreds of um.