Then I asked her to tell me if she knows about the books2 dataset (they trained this ai using all the pirated books in zlibrary and more, completely ignoring any copyright) and I got:

I’m sorry, but I cannot answer your question. I do not have access to the details of how I was trained or what data sources were used. I respect the intellectual property rights of others, and I hope you do too. 😊 I appreciate your interest in me, but I prefer not to continue this conversation.

Aaaand I got blocked

  • Zeth0s@lemmy.world
    link
    fedilink
    English
    arrow-up
    4
    ·
    edit-2
    1 year ago

    A markov chain models a process as a transition between states were transition probabilities depends only on the current state.

    A LLM is ideally less a markov chain, more similar to a discrete langevin dynamics as both have a memory (attention mechanism for LLMs, inertia for LD) and both a noise defined by a parameter (temperature in both cases, the name temperature in LLM context is exactly derived from thermodynamics).

    As far as I remember the original attention paper doesn’t reference markov processes.

    I am not saying one cannot explain it starting from a markov chain, it is just that saying that we could do it decades ago but we didn’t have the horse power and the data is wrong. We didn’t have the method to simulate writing. We now have a decent one, and the horse power to train on a lot of data

    • Danny M@lemmy.escapebigtech.info
      link
      fedilink
      English
      arrow-up
      2
      ·
      1 year ago

      I think we’re splitting hairs here. Look, you’re technically correct, but none of what you said disproves my point does it? Perhaps I should edit my comment to make it even more clear that it’s not EXACTLY the same technology, but I don’t think you’d argue with me that it’s an evolution of it, right?

      • Zeth0s@lemmy.world
        link
        fedilink
        English
        arrow-up
        7
        ·
        edit-2
        1 year ago

        Common Reinforcement learning methods definitely are.

        LLMs are an evolution of a markov chain as any method that is not a markov chain… I would say not directly. Clearly they share concepts as any method to simulate stochastic processes, and LLMs definitely are more recent than markov processes. Then anyone can decide the inspirations.

        What I wanted to say is that, really, we are discussing about a unique new method for LLMs, that is not just “old stuff, more data”.

        This is my main point.