Yeah, I think massive chemical batteries for storing excess electricity to facilitate a contrived green energy market is a bad idea.

        • Yggstyle@lemmy.world
          link
          fedilink
          English
          arrow-up
          2
          ·
          1 month ago

          Adam Something is awesome. I genuinely wish I could see his face as he reads through the next tech bro’s idea for pods.

          Practical Engineering is a great one for anyone curious about how things work.

      • WraithGear@lemmy.world
        link
        fedilink
        English
        arrow-up
        4
        ·
        edit-2
        1 month ago

        Weight lifting is slightly less efficient due to friction and heat generated by pully system, and the vast amount of weight and space needed may limit available storage possibility and scalability. But its simple, and safer.

        • Badabinski@kbin.earth
          link
          fedilink
          arrow-up
          5
          ·
          1 month ago

          We lack the materials and engineering necessary to make lifted weight storage systems enter the order of magnitude of energy storage needed to compete with batteries, let alone pumped hydro. It’s just really, really hard to compete with literal megatons of water pumped up a 500 meter slope.

          I believe that the plant in question was using something besides Lithium Iron Phosphate batteries. This press release mentions LG JH4 which are deffo not LiFePO4. LiFePO4 batteries are far, far safer than other Lithium chemistries, and are now the norm for BESS (not cars tho, since they have lower energy density but better a better lifetime than NMC/NCA). This fire would not have happened with a BESS using LiFePO4 batteries.

          Now that batteries with aqueous sodium-ion chemistries are becoming available, we should begin transitioning pre-LiFePO4 sites to those wholesale. Aqueous sodium-ion batteries should be even safer than LiFePO4, and while they have kinda shit energy density, they’re still fine for grid storage.

          EDIT: correction, LiFePO4 batteries can run away, but they are incapable of autoignition.

          • cmnybo@discuss.tchncs.de
            link
            fedilink
            English
            arrow-up
            4
            ·
            1 month ago

            LiFePO4 batteries are safer and harder to ignite, but they can still go into thermal runaway and can burn. If a fire started in a battery that big, it would still spread and it wouldn’t be practical to extinguish it.

            • Badabinski@kbin.earth
              link
              fedilink
              arrow-up
              3
              ·
              1 month ago

              You’re correct that they can enter thermal runaway, they just can’t autoignite. I really suspect that if this site has been using LiFePO4 cells instead of NMC, it wouldn’t have gone up like it did. 3000 MWh of NMC cells sounds absolutely bugnuts crazy to me.

          • Yggstyle@lemmy.world
            link
            fedilink
            English
            arrow-up
            1
            ·
            1 month ago

            It’s important to remember that engineers and scientists are having to fight with 3-4 competing forces: efficiency, density, safety, cost. Even if we have a promising idea it just may not yet be technologically feasible to make the switch over yet. LiFePO4 definitely hits the Goldilocks zone where it gives up some density / weight / charge speed (if I recall) for longevity and overall safety. I think they’ve found a solid niche in home storage for sure. I personally prefer those cells over lithium ion for that reason… and honestly was using lead acid prior to that simply because lithium ion came with too many risks.

      • Mihies@programming.dev
        link
        fedilink
        English
        arrow-up
        9
        ·
        1 month ago

        No, it’s not, at least not at scale, because you need specific geography and plenty of water. Why do you think we are not massively using it?

        • tehWrapper@lemmy.world
          link
          fedilink
          English
          arrow-up
          3
          ·
          1 month ago

          Can prob dig a whole system the same as they did to get all the materials for this mess.

          The water would also not be useless like all the water used to process the battery materials.

    • CrimeDad@lemmy.crimedad.workOP
      link
      fedilink
      English
      arrow-up
      2
      ·
      1 month ago

      Abandon the model of buying and storing electricity when demand is low and reselling power back to the grid when demand is high. Instead, electricity should almost always be generated in excess of demand with the difference going to hydrogen and oxygen production for various medical, industrial, agricultural, and transport applications. If we ever run out of storage, they can be safely vented to atmosphere.

      • solrize@lemmy.world
        link
        fedilink
        English
        arrow-up
        3
        ·
        1 month ago

        Before you can can do that, you need enough renewable generation capacity to exceed peak demand. And of course that will never happen because of the bottomless appetite of AI and bitcoin mining for electric power.

        • CrimeDad@lemmy.crimedad.workOP
          link
          fedilink
          English
          arrow-up
          2
          ·
          1 month ago

          We need an authoritarian figure to nationalize the energy supply, shut down these wasteful expressions of late stage capitalism, mandate rooftop solar, and build out our nuclear fleet.

      • gens@programming.dev
        link
        fedilink
        English
        arrow-up
        1
        ·
        1 month ago

        Electrolisis is relatively inefficient and wears down the electrodes. While not as bad on an industrial scale, those are still problems. And then you have to convert it back, that is even less efficient.

        Good in theory, barely passable in practice. Growing sugar cane and making ethanol would be better, like brazil does it.

        • CrimeDad@lemmy.crimedad.workOP
          link
          fedilink
          English
          arrow-up
          1
          ·
          1 month ago

          What do you mean by “convert it back”? Convert it back to electricity for the grid? No. We need the hydrogen for important things, like making steel and fertilizer.

      • Yggstyle@lemmy.world
        link
        fedilink
        English
        arrow-up
        1
        ·
        1 month ago

        You’re hard pushing hydrogen / oxygen pretty blindly. Do you happen to know what the best efficiency of it is? It’s not great. And it gets worse when you have to harvest it (typically electrolysis which is brutally energy intensive.) Worse still when you need to compress it - and don’t even start me on energy density. Oh and that compressed gas needs to be kept cold. More energy.

        Hydrogen cells have been around for ages and are still functionally worthless until the storage and generation problems are solved.

        • CrimeDad@lemmy.crimedad.workOP
          link
          fedilink
          English
          arrow-up
          1
          ·
          1 month ago

          As I’ve already explained, we need hydrogen. We need it not for energy storage, but as a useful, important product. Electrolysis of water is pretty much the only way to get it without emitting greenhouse gases. Therefore, the efficiency of it doesn’t really matter, especially if the energy to do it would otherwise go to some dangerous, battery based buy low/sell high scheme.

    • monkeyman512@lemmy.world
      link
      fedilink
      English
      arrow-up
      1
      ·
      1 month ago

      I believe there is battery tech that is newer but being deployed into production that is iron based. It is heavier and less energy dense than lithium. But for power grid level deployment that should be fine and iron is a bit harder to catch on fire.