• the_tab_key@lemmy.world
    link
    fedilink
    English
    arrow-up
    53
    ·
    20 days ago

    Even if the x-x term didn’t exist, the equation is already simplified (fully factored) so there is nothing to do anyway.

    • sem
      link
      fedilink
      English
      arrow-up
      1
      ·
      12 days ago

      What’s the right term then? “Multiplied through?” ? “Complicated?”

    • is already simplified (fully factored)

      No it isn’t, given one of the factors is equal to zero. That’s like saying 2/4 is fully simplified when clearly it isn’t. Students lose marks in tests for not simplifying their answers. Writing 2/4 as an answer would only get half-marks. Similarly, the only full-marks answer to this question is 0.

      • the_tab_key@lemmy.world
        link
        fedilink
        English
        arrow-up
        1
        ·
        edit-2
        9 days ago

        My stipulation was that the x-x term didn’t exist, such that the equation would be fully simplified (assuming the request was “factor and simplify”). Yes, you could also “expand and simplify” (as in your other comment) but I would argue the result of that would be less simplified than the factored version. Eye of the beholder type thing.

        I agree that if x-x did exist as a term then expand and simplify would be correct (that is if x-x wasn’t noticed to be 0 immediately and no expansion would be needed at all).

        • My stipulation was that the x-x term didn’t exist, such that the equation would be fully simplified

          And it STILL wouldn’t be simplified.

          “factor and simplify”

          Factorising is the opposite process to expanding, so no, there’s no such thing as “factor and simplify”.

          I would argue the result of that would be less simplified than the factored version. Eye of the beholder type thing.

          It’s a definition of Maths thing. Simplified answers don’t have brackets in them.

          • the_tab_key@lemmy.world
            link
            fedilink
            English
            arrow-up
            1
            ·
            edit-2
            8 days ago

            Are you a high school math teacher by chance? Because you’re using a rigid definition of simplify that I don’t necessarily agree with. For example, if I give you the fraction:

            (x2+(a+b)x+ab)/(x2+ax-bx-ab)

            And told you to simplify, what would you do?

            • Are you a high school math teacher by chance?

              Yep.

              Because you’re using a rigid definition of simplify that I don’t necessarily agree with.

              You don’t agree with Maths textbooks? 😂

              “And told you to simplify, what would you do?” - I would ask you what on Earth it’s supposed to say, given it’s formatted all weird! 😂

              • the_tab_key@lemmy.world
                link
                fedilink
                English
                arrow-up
                1
                ·
                8 days ago

                It’s raw text on my side, looks fine. It might be fixed now? Not sure how the formatting works for equations on Lemmy.

                And correct, I don’t agree with whatever you are interpreting from your math textbooks because “simplify” literally means to make the equation easier to understand. You are arguing that “expand and simplify” is the exact same thing as “simplify”… Which if they were, it would just be in word, wouldn’t it… Sometimes factoring is prudent. Other times expansion is necessary. This is exemplified by the math I gave in the previous comment.

                And thanks for the downvotes. I hope you don’t treat your students the same way when they question your ultimate wisdom by dismissing them outright. I certainly don’t to mine.

                • “simplify” literally means to make the equation easier to understand

                  Nope. It means to present it in the simplest way possible. e.g. 5/10=1/2.

                  You are arguing that “expand and simplify” is the exact same thing as “simplify”

                  No I’m not. I’m saying “expand and simplify” is a thing in all high school Maths textbooks, “factor and simplify” isn’t a thing in any of them.

                  “Sometimes factoring is prudent” - if you’re trying to solve an equation, yes, but solving and simplifying aren’t the same thing. If I arrive at an answer of 5/10 then I have solved but not simplified. Sometimes it’s not even possible to simplify, because the answer is already in the simplest form possible, such as an answer of 1/2. I teach students when to recognise when something can be simplified and when it can’t. Your original contention was that the Term was already simplified, and it wasn’t.

                  “And thanks for the downvotes.” - I downvote anything that is incorrect, just like a student would lose marks for same.