Something I find incredibly weird about US company culture is how they talk about overtime like it’s a good thing.
“Our employees worked weekends, days and nights to make this happen! We wouldn’t have succeeded without people who are willing to give up their personal lives!”
I hope they not only succeed but get shares. Doing weekends or nights for a company you don’t (partially) own feels like a con.
Find people who care about what they’re working on and they’ll go well beyond the extra mile. As an extra motivator, make it clear the company won’t be around if they don’t succeed. I’m sure these employees have shares, but tha only really matters if the company succeeds (extra motivation!). Unfortunately, there have been a ton of green/green-adjacent automotive “startups” that have struggled to gain a foothold. See also:
(I’m sure many others)
Here are a few other interesting green automotive startups that didn’t make it:
- Sono Motors’ Sion: Compact EV with solar panels, power sharing, intended to be easily repairable and included a detail manual. They had prototypes but never went to production. Now the company does niche solar applications.
- Workhorse: Series Hybrid (think Chevy Volt) Pickup truck with onboard power for tools etc (was announced around or even before Rivian). Was a very pragmatic idea IMO. Later sort-of resold to Lordstown. Now company does some other things, like drones.
- Lordstown Motors’ Endurance: EV Pickup Truck with hub motors. Made a few hundred, but they have been dragging it out long enough for Ford to make electric pickups. And the idea wasn’t too original even when it was announced.
Fisker is nothing but a conman, always has been. His MO is literally to start a company, secure funding, make a personal fortune and then abandon the bankrupt shell and leave customers hanging.
it is a con
Nothing says product quality like overworked employees
It’s also a bit strange to see a production-intent build of a solar electric vehicle without any solar panels. Still, Aptera shared that technology will be implemented next alongside the SEV’s production-intent thermal management system and exterior surfaces.
This thing is pure vaporware. My new Leaf isn’t.
Im not saying it isn’t, but fitting custom curved prob special solar panels on a test vehicle does not sound cost efficient, especially when you can test the solar panels separately perfectly fine.
Cars are complex to construct properly even without drivetrains, plenty to test there.
True, but my understanding is the amount of solar energy that hits an area the size of a car multiplies by the max possible solar energy conversion is still far below what’s needed to power a car. Sure, you can continue to charge it while parked, which is cool. However, you could also put cheaper non-custom panels on a building and then plug your non-solar electric car into it to charge while parked, and the building panels will have significantly better solar exposure and be cheaper per panel.
If your goal is making something effective that reduces carbon output, an EV and solar on a building is much better. If you’re creating junk to get VC funding, this is what it looks like. If this comes to market at all, it’s not going to make any waves, except maybe for how impractical it is.
You’re taking for granted the fact that many people don’t have the luxury of modifying their house/condo/apartment to install and maintain solar panels. Nor is it guaranteed that they have a garage/driveway to charge their car. With the Aptera, you wouldn’t have to deal with the hassle or inability to install solar panels because you would be able to passively charge it anywhere it’s sunny (i.e. while driving as well). So I disagree that this is just an objectively worse option than charging with rooftop solar, especially because of how competitively priced the Aptera will be compared to standard EVs.
Youd probably have a better time designing a popup thing for the top of a car that has solar panels. Then you dont need to deal wigh the body shape of the car while still being able to maximize the output to a decent degree depending on how complex you want to make it.
I could see a market for a small electric camper van (Like actual small van sized like the old VW vans) with a solar roof. For regular camping you would always have electric to charge your phone and if you wanted to tour around a bit you could probably stay at each location for 2/3 days and gain enough charge to make it to the next one (at least in summer)
For sure. I’ve always lived an idea like that. You can buy portable solar panels you can throw up on your roof when parked though, or place them elsewhere, so I don’t know if it’s required. It’s a concept I could see actually working though. Not this.
You can get teardrops with solar panels, but I haven’t looked into electric RVs.
Solar panels aren’t worth it for a normal EV, but supposedly the Aptera is so small, lightweight, and aerodynamic (with that teardrop shape) that they actually add a significant amount of range.
Oh, I agree with you there (well, not in the tech itself, why not both, have panels on buildings and on some cars – plenty of people drive only a few thousands of kilometres/miles per year & still need a car).
I’m just saying that as engineer I would start testing them separately, in lab conditions first to get the basics & correct obvious initial faults, then separately outside.
As management I however would insist that engineer has to find a way to glue whatever solar panels they can find to the prototype if there is gonna be a press release.I didn’t read much what they are doing/going for tho, so can’t say much about that.
Why not both is because most people don’t have unlimited money. It’s about opportunity cost. It’d be better to buy a cheaper EV and better rooftop solar than and expensive EV that has mediocre solar charging.
For sure they should test them separately if they’re doing this though, or at least not use custom ones for the prototype. You can buy small panels for a reasonably good price, and they could just stick those on the car for a proof of concept. The problem with this is it’d prove that the amount of power required is way more than is going to be generated. If they can talk about concepts then then people can still wonder “what if…” If they actually implement it then it makes it obvious there’s no reasonable path to a good market and they lose FC funding.
In a free market and under current western capitalism the final consumer price (or entire consumer market supply for that matter) isn’t directly linked to features.
Ie they will sell you at max price as little as they can, not at a cost based price.
(Anyway, a cars worth of solar panels is such a negligible cost in relation to cars base price or options lists that it doesn’t matter that much)And I don’t ever think you need any kind of prototype or testing to show how much solar energy can a surface of a car produce and how much travel distance does that represent - to ballpark it that is just a simple online search (you have enormous quantity of solar panel efficiency data, per latitude, as well as actual electric car consumption rates).
Bcs of that obvious common sense & various types of other solar cars out there I really doubt anyone is getting deceived here on solar mileage. The company does not claim they invented any revolutionary new solar panels (I doubt they hide the wattage spec they intend to install), nor hide the car (it’s a design 10+ years old, the point of which is that it has about a 0.1 drag coefficient, so about half of that of the sleekest other cars today). Their goal here is to put the existing design into production, so more of a logistical challenge - their prototypes need to prove they can build cars (to establish a production line), not to prove any overall concept of a solar car itself.
Additionally you can already get Hyundai Iconiq 5 with a solar panel sunroof for years now, it ads a mile/kilometer per day in real life (for people with a couple of miles/kilometre commutes that’s actually noticeable). But for decades you could get some car models (Toyota & Audi at least) with a solar panel sunroof, mostly they just powered the 12V battery with it to run auxiliary systems (like ventilation, AC).I think you might have jumped to the conclusion this company is trying to sell solar cars with unlimited (outside?) range.
I think you might have jumped to the conclusion this company is trying to sell solar cars with unlimited (outside?) range.
No, I jumped to the conclusion that it must be less effective than the alternative of rooftop solar + conventional EV. There is no world in which this is better. Rooftop solar will always have better solar access, and conventional EV will be cheaper because of effeciency of scale. This design is limited to powering the car only, and will never be as ideally situated as rooftop solar. The opportunity cost of this car will be worse than rooftop solar + EV. Sure, for people with unlimited money it might sell, but most of us don’t have that and have to compare cost to value and choose the best option for that.
I have rooftop solar, but only for the house because I can’t reach my car to charge it in the street.
The car sits outside for days (I work from home), so in my case this would be great.
This is the 1st I’ve seen of this car, so haven’t read any other details, but I’d be surprised if external charging wasn’t possible.
Sorry, but what sort of conclusion is that? I don’t understand, it’s divergent things.
Lots of tech that cars offer I can also have at my house, like a sound system or massage chair.
Car prices don’t reflect constriction costs.
Cars won’t be more or less expensive bcs of 200$ of solar panels.Also people with budgets constraints dont buy new cars, why would they?
The car is efficient enough for it to do something (20-30 miles a day in summer if I remember), but yes it’s mostly marketing and they say as much. “Solar electric car” sounds a lot better than “this car is pretty normal but it’s super efficient”
No one is trying to take away your Leaf, though.
Let them push the envelope. Failing is a required pavestone on the road to almost every success story.
I suppose that the solar panels are in a field somewhere. It’s much more efficient.
It’s good to see that Aptera is still a possibility!
For real. I was so hopeful for the Type-1 and would’ve reserved one if I had the money.
Been following this company’s development for over a decade now. I really want them to succeed but I have major doubts.
I want them to succeed. I really hope they do.
A few things the cynics are missing.
- The engineers who are designing this car don’t have the political power to push for better mass transit.
- Even in ideal circumstances, there will still be a need for personal transport vehicles and infrastructure. Small cars will still be needed.
- Aptera has 31 employees as of 2023. If they’re working overtime, it’s because they’re letting the company do it. Maintaining good moral is way more important in small companies.
I’m excited to see them succeed. I love it when stuff is designed with function over form, and made practically. I’m a tall person, this is the only small electric vehicle I feel I could actually fit in
Lots of people here criticizing Aptera who clearly haven’t researched the company or the tech.
Please just do trains. They can even be solar powered - a lot easier than this.
Trains are easy and they’re easily electrified already. So putting solar on the trains won’t have any advantage.
Rails are the difficult part of railways. They never seem to put them between my house and my work. They’ve put something called a road in between instead.
I presume they meant to put in railway infrastructure.
Railways cost so much less than one highway, we could have a system basically from home to work.
(eg smol trams to a midway se station to high-speed trains)Is that true in California? Caltrain is costing $5.15 billion per mile.
Caltrian is not California High Speed Rail
Ok? The point is that rail development is expensive and like an order of magnitude the cost of Aptera. Ideally we could do both but they shouldn’t be put into the same bucket.
No it’s not, railway infrastructure comes at a fraction of a cost of highways, the maintenance alone, all the tires, fuel, insurance, etc of cars, even the environment impact (in like the area they cover/destroy) is minute.
All that costs, somebody has to pay.
Really? So we can install thousands of miles of rail for under a billion dollars? Let’s do it!
I note with interest that you are repeatedly posting the same cherry-picked factoid.
Average cost per mile for new track in the USA can be anywhere from $100mil/mile to over $1billion/mile for complicated projects like tunneling. This is roughly 50% higher than Europe - most likely for the simple fact that they have a larger industry for it. These are both quite high on an international scale- China builds new track for 24-48mil USD per mile.
You mean the huge underground train station & several miles of tunnels around if, with all the work preformed underneath an undisturbed city?
Yes, that is still waaay cheaper than constructing an underground highway of that magnitude/that area (+ an underground station you conveniently included in the estimate) .
Or did you have something else in mind?
Why would you build the highway underground?
Same reasons as railway I suppose - its expensive to destroy a city centre to get the land needed for it.
But you started the comparison with the underground thing.
But the city already has highways. If we started fresh sure let’s do more rail.
My point is just, what infrastructure can you do with say <$1b? It’s a lot of money but not building a whole new railroad kind of money. You can get a few station upgrade projects, a couple of electric trains, etc.
There’s room for private funding of a new electric car company. Save the tax dollars for big infrastructure projects.
Kind of a different scale. $5.15 billion per mile of track for Caltrain. Aptera hasn’t even broken a billion in funding.
I note with interest that you are repeatedly posting the same cherry-picked factoid.
Average cost per mile for new track in the USA can be anywhere from $100mil/mile to over $1billion/mile for complicated projects like tunneling. This is roughly 50% higher than Europe - most likely for the simple fact that they have a larger industry for it. These are both quite high on an international scale- China builds new track for 24-48mil USD per mile.
$24-48m per mile is still quite a lot. It’s just not the same scale in expense.
Trains are already electrified.
Yes. That is the point.
As much as people on Lemmy love trains, they’re not replacing cars no matter how good the infrastructure is.
I think the goal is they can replace cars a ton of the time for a ton of people. Take the train to work and then rent a car for the occasional road trip.
It’s a noble goal don’t get me wrong, but cars are just way too convenient to get rid of for most that don’t live in the central zones of cities. Just things like taking your kid to their swimming lessons, evening activities, going to the tip and garden centre and dropping off at your parents en route, visiting friends that are several villages away, kids birthday party and then going to the supermarket after to pick up some food etc.
Something I’ve noticed is that people on Lemmy never seem to advocate for busses, it’s always trains.
A solar powered car that topped at 70mph would be ideal,
But goddamn, could you imagine just having one that topped at 30 MPh in a city? Infinite travel!
If you can park on top of a parking garage, or in a spot on ground level where sunshine is not too much blocked by the surrounding buildings, you could surely commute on sunshine. Home parking barely matters for day shift workers in this scenario.
We have that already; it’s called a bicycle.
The future of transportation everybody: a car.
that is not a car. It is a Reliant Robin meets the BORG
deleted by creator
Good, now keep the momentum up, Aptera. You’re so close to the reality.
The Aptera has been promised for over a decade now. I’m somehow amazed they are still trying.
deleted by creator