- cross-posted to:
- hackernews@lemmy.smeargle.fans
- technews@radiation.party
- cross-posted to:
- hackernews@lemmy.smeargle.fans
- technews@radiation.party
"Accomplished by a team at the Huazhong University of Science and Technology and posted 30 minutes ago.
Why this is evidence: The LK-99 flake slightly levitates for both orientations of the magnetic field, meaning it is not simply a magnetized piece of iron or similar ‘magnetic material’. A simple magnetic flake would be attracted to one polarity of the strong magnet, and repelled by the other. A diamagnet would be repelled under either orientation, since it resists and expels all fields regardless of the polarity.
Caveats There is no way to verify the orientation of the strong magnet in this video, also, there are yet to be published experimental measured values of this sample. Diamagnetism is a property of superconductors but without measured and verified data, this is just suggestive of a result.
Take-away If this synthesis was indeed successful, then this material is easy enough to be made by labs other than the original research team. I would watch carefully for results out of Argonne National Lab, who are reported to be working on their own synthesis of a sample.
This overall corroborates two independent simulation studies that investigated the original Korean authors claim about material and crystal structure, and both studies supported the claims.
Lawrence Berkeley National Lab: https://arxiv.org/pdf/2307.16892.pdf Shenyang National Lab: https://arxiv.org/pdf/2307.16040.pdf "
Would this potential superconductor work in devices like phones and laptops? Would it lead to more efficient operation?
If inexpensive it could be used in power components for consumer electronics like phones and laptops, but wouldn’t make a huge difference since most of the power consumption occurs in chips and displays where superconductors wouldn’t apply. Though it could lead to some reduction in size and better efficiency. Battery operated devices are considered low power. High power applications are where superconductors offer the most benefit.