600 miles? Call me when they make one small enough to fit in a car
heyooooo
You joke but I literally pictured a super long battery for a solid bit before it clicked. I was thinking maybe it was coiled and technically really long like a spool of wire
Technically …… assuming cylindrical, it’s a long strip of metal rolled up. Not that long though
It’s such a dumb metric for batteries. I wish people would stop using it.
Eh, it’s really not that dumb assuming there’s an average electric discharge for electric vehicles. Most laypeople don’t understand kWh beyond “bigger number better”.
I mean its a more a metric for the over vehicle. It can move its self that distance on a charge.
The battery would kWh but that alone is insufficient for evaluating the vehicle
kWh/Kg is really all that matters, maybe max charge/discharge rates too.
But they aren’t clickbatey enough for commercial news.
But kWh/kg doesn’t account for additional energy sinks or drive train efficiency
Sure, for a specific car, but Samsung isn’t making cars, just a battery that could go in a number of different vehicles. So all we’re really able to compare is batteries, not full vehicle efficiency.
If they’re intending to suggest this new battery, when fitted in an existing EV (say a Model Y) would result in a 600 mile range, then it’s interesting, but all other things (drivetrain, drag, vehicle weight) would have to remain constant.
Oh dang I’m the fool. You’re 100% correct. I assumed it was a full vehicle system with a battery.
Miles
Metric
Pick one 😂
Metric = a measurement, not the metric system.
@programming.dev
Makes sense
It’s what people care about.
An EV that can only travel 300 miles on a charge is a complete nonstarter for me. It’s simply not enough for trips I take with regularity.
But it it’s stupid because it doesn’t really relate to anything. Different cars have different ranges with different sized batteries and different efficiencies, at different weights and different volumes, so I have no idea what it means.
Wouldn’t it be both more straightforward and more meaningful to phrase it like: x% more power for the same weight as current LfPO used in Tesla standard range
Most importantly, batteries will always be expensive, so most manufacturers will prefer fewer/smaller for a cheaper and lighter car of similar range. Aside from trucks, I don’t see why we’d ever see many 600mile range EVs, especially if we get truly fast charging
But people don’t care about that. They care “how far can x car go with it”.
I will never even consider buying an EV that can’t go a minimum of 500 miles on a charge. I’m not willing to have short weekend trips held hostage by the availability of charging stations. 500 miles is still not a long round trip.
But most ICE vehicles won’t go nearly that far on a tank of gas, they seem to most commonly go a bit over 300. Why should EVs be any different? Many of them already claim a similar range.
The difference is the ubiquity of gas stations. That infrastructure was built out over a century, and we need to do similar with chargers but ten times as fast
It’s really weird how emotional some people get about EV range and their completely imagined charging issues. On a 500 mile trip an EV adds maybe 20 minutes of charging, and that’s if you are really trying to maxmin gas stops in an ICE.
Meanwhile never going to the gas station during the week because I charge at home saves way more time.
My car is a hybrid that goes 550 on gas without being plugged in. I’m not willing to go below that.
The ubiquity of gas stations is exactly the point. Less populated areas aren’t going to add charging stations, and even if they did, fast charging still sucks.
As someone who does weekend trips in a 300 mile EV all the time, this is hilarious. You do you though.
How about the 2024 Ford Escape PHEV. 37 mile range on electric, which will cover most of dialy driving, and then it switches to gas. Should work out that you can pay 1/3 cost for fuel most percent of your driving, and not have to worry about long range trips. Base price is like 41k, meaning a used vehicle would drop quick.
Edit: apparently the 2025 now starts at 38k. So price came down didn’t find range.
I think the complaint is most people don’t bother using the ‘P’ so it turns into an ICE with extra steps
deleted by creator
I have an older fusion energi and don’t plug it in because charging every day is a hassle.
I’m not anti-anything though. Clean energy is good, efficiency is good, the luggage space wasted isn’t awesome but whatever. I’m just explaining why I care about range. That’s not a long weekend camping trip and the infrastructure for pure battery in the places I like to be don’t make low range viable.
How so, I’m curious? Do you drive into no mans land hundreds of miles away from civilization or are you a robot that never needs to take a break?
That’s a 3 hour drive into the mountains, and running out before I get back. It’s not a long trip.
But, yes, stopping on a road trip is also a massive issue, and turning a 5 minute stop once a day into 20 3 times a day (on the limited routes where there are charging options) on an actual long trip would also be a dealbreaker by itself.
I don’t know how remote your mountains are, here there would likely be a charge point less than 50km away but I don’t know where you drive. I give you that.
Your second point though, you might want to reconsider your driving habits. Random google result for breaks when driving: “If driving long distances, you should stop for at least 15 minutes every two hours. Stop often to rest for at least 45 minutes every 4.5 hours of driving to avoid getting tired and stay alert. Plan to stop for a break every 100 miles on your long road trip so that you can relax. Try to only drive for 9 hours a day.”
If there was a charge point within 50 miles I wouldn’t want to be there.
A five minute stop once for gas is already more than too much of a waste of time. I absolutely will not throw away hours a day for no reason.
Even with a 10-15 mins recharge? A couple of times a year I do make a 500 mile journey and if there wasn’t a sea in the way I would happily do it all in one sitting. But as a teeny tiny compromise I wouldn’t mind stopping to charge once or twice along the way! It would add about 20 mins to the journey sure, but seems like it’s worth the benefits to me.
I don’t go places where recharging is an option.
The long trips are ones where I’d be turning one 5 minute stop into at least an hour of stops per day. That’s not a small compromise any more.
You drive a full day with only one five minute stop? I think taking regular breaks is recommended when driving for long periods.
Absolutely. A stop is lighting time on fire. It turns a tedious experience into a completely unbearable one.
Yet! It will be an option everywhere eventually…
I don’t think you would get to the charger in 20 minutes. Assume there will be line.
I’d think that too, but I had my first ever ride in a Tesla recently and the way the supercharger network is handled seems pretty clean. Far from a Tesla fan boy but way the car books you a slot and then charges you a fortune if you overstay meant that we had no problem getting a space. Once charging becomes the norm it will be fine.
Want a stupid metric? How about miles per gallon
It’s not stupid if it takes hours instead of minutes to charge up. If this tech really delivers, then I’ll be more than ok with a 200 miles battery that charges in 3 minutes.
If it were any other company I would be thrilled. With Samsung, this is going to be internet enabled, you’ll need an app to turn your car on and off, and it’ll probably play ads at high volumes constantly while driving.
I know you jest, but Samsung is a massive battery supplier.
These will be plain old dumb batteries
I dunno man, my 21700 cells just got an OTA update and now my flashlights wont turn on without watching an ad blinked out in mores code first.
“Never install, carry or handle”. OK but what are they for then?
These are cells that are meant to be assembled into larger battery packs by electronics manufacturers, like laptop batteries or e bike batteries.
The cells are fantastic for flashlights, lasers, and vapes, but Samsung does not sell them to end consumers and wishes other companies would not do that either but fuck Samsung I’m not stupid.
The cells are fantastic for flashlights, lasers, and vapes
I remember in high school, one of my teachers showed the class a battery and said “This is the same battery they use in vapes. The big ones… not the small ones you guys use”
I am stupid. How dangerous would one of these be to me if I picked it up by the ends (Or whatever to make it discharge into my body)?
It wouldn’t be dangerous at all to do that. They can be dangerous because the cells are unprotected, so if you short the ends together with something a lot more conductive than your fingers (eg metal) the cell will very quickly overheat and possibly catch fire, since there’s no protection circuit to detect and cut off current when a short is detected.
Don’t you know it’s popular to shit on Samsung…or something?
Its a battery that’ll be used by other manufacturers
…and will probably explode.
Are solid state batteries having issues with catching fire? I thought that was liquid batteries? Or is this just like saying everything bad that ever happened with lithium ion batteries will happen with everything else?
It was just a joke, ffs.
Samsung devices & appliances are notoriously prone to catastrophic failure - as a matter of fact, I actually had a Samsung TV melt itself - which turns out is a common issue (Google “Samsung tv melting corner”).
Then there’s the Samsung battery fire issues, Samsung refrigerator safety lawsuits, etc.
And the washing machines that keep grenading and killing people.
To be fair, they don’t actually grenade.
…They turn into life sized, several-hundred-pound Beyblades ricocheting around your house. Which isn’t actually any better.
I have an 12? year old Samsung LED TV. It’s good. Getting rid of it while it’s still working is such a waste.
Keep a fire extinguisher nearby! ;-)
One could hope that the designs get leaked and the tech becomes widely available without the corporate shitbags.
Wait, which company had their battery blowing up ? And were not safe for flight. If these battery blew up then it would be devastating.
This
For a smaller EV It would take around 200kWh worth of battery for a 600 mile range. The current Tesla “superchargers” put out 250kWh. So whatever is going to charge this battery will have to output roughly an order of magnitude more power in order to charge the battery in 6 minutes. That’s an impressive and scary amount of energy transfer.
Edit: I don’t know where I got 6 minutes from. So not quite 10X the power for charging, but a LOT more than current chargers.
A couple things: solid state batteries weigh much less. Solid state batteries are 30-50% lighter per kWh. The initial ones will probably be closer to 30% lighter. A 100 kWh battery weighs about 1400 lbs (635 kg). Shaving off 400 lbs is pretty significant and results in much better range for the same battery capacity. The battery pack is likely closer to 150 kWh.
Second thing would be the charge rate. Yes, a supercharger can 250 kW output (not kWh BTW) but a few factors means that they often do not. First thing would be heat. If the charging cable or the battery gets too hot, the the rate slows down. The next thing would be the fact that current batteries have to start at a slow rate and end at a slow rate. Solid state batteries do not have those issue nearly as much and can more consistently hit that 250 kW output for a longer period of time.
This thing, they are likely using 350+ kW chargers. Higher than 350 kW is pretty rare but the odd 400 kW and 450 kW charger does exist.
And doing some more digging, I found that it is from 8% to 80% in 9 minutes. And even then, it does not say it is the same 150 kWh battery that is being charged that fast. This could be marketing crap where it is giving numbers for a ~85 kWh battery to compare it to EVs today. An Ioniq 5 takes about twice as long to go from 10-80% at 350 kW.
Super informative, thanks :)
The current Tesla “superchargers” put out 250kWh
kW
My wall outlet charger puts out 250 kWh, if you leave it in for 2 weeks straight…
So each supercharger will need it’s own miniature fusion power plant. Great, now fast charging solid state batteries will always be 30 years away.
Yes, Teslas can charge at 250 kW, but they do not sustain that charging rate for long. As the battery charges, its charging rate drops. If newer battery technologies can sustain the higher charge rates longer, they could theoretically store more charge in less time.
This is the big reason why solid state batteries aren’t an EV miracle. Pack density and charging speeds these days are already limited by cooling capacity. Trying to pump a few MW of power into a battery pack to get 600 miles in 9 minutes is going to melt the car, or require lugging around a huge cooling system.
Standardized interchangeable batteries would be neat. Pull into a battery station, a machine swaps out your packs and you’re on your way faster than a fill-up.
That was one of the original tesla quick"charge" concepts. You’d drive over a pit like oil stops and it situs swap out your battery for a charged one
EE here. Chargers put out power in units of kW, while batteries store energy in units of kWh or MJ or what have you. Otherwise, you’re absolutely correct.
Typically Distributed Generation (DG) scale solar PV and battery storage sites are sized anywhere from 1 to 10 MW.
At 1 MW, you could run (1) charger at a speed of 1 MW, or (2) at 500 kW, etc. Usually need just (1) transformer for that size installation too.
At 10 MW, you can run each charger at 1 MW or so, but you’re also talking about probably (4-10) transformers @ $250k USD a pop. Installation prices go up the more you demand in power transfer.
Then you need to consider that most DG projects need to pay for the upgrades to their downstream grid architecture, meaning reconducting or upsizing cable, breakers, switches, transformers, reactors, sensors, relays, etc.
Not saying it’s impossible. You could co-locate and DC-couple solar PV or Wind parks next to charging points to get around some of the grid upgrades, but most people live in areas that require homes and grocery stores and other buildings than flat land meant for solar PV or Wind.
When it comes down to it, it’s so much easier to just trickle charge your EV at night via arbitrage and when you’re sleeping so all of this infrastructure doesn’t have to been upgraded - and I’d argue upgraded needlessly because we need to save that copper and iron and materials for upgrades to the parts of the grid meant to interconnect renewables.
But there is no silver bullet to these things so we’ll likely see more, larger chargers come through unless regulators stop it from happening.
So what’s the catch? Is it the price?
Samsung
Battery
/s
Don’t fly your car with the Samsung battery.
FTA:
Apparently, they are also rather expensive to produce, since it warns that they will first go into the “super premium” EV segment of luxury electric cars that can cover more than 600 miles on a charge.
So yes. Expensive initially.
Basically, yes. The big issue with solid state batteries is figuring out how to mass produce them at a price where someone will actually buy them.
Remember the Note 7 recalls?
https://www.gta5-mods.com/weapons/samsung-galaxy-note-7-bomb
The whole point of a solid state battery is that they don’t do that.
Actually the risk of that should be lower
20 years is very nice, how recyclable are they after that though?
The process for recycling solid state batteries is more complicated at the moment:
There are companies that claim to be ready to recycle most car batteries, but there are just not many old ones yet
I’d love to imagine around 20 years later people would be retrofitting old and heavy phone, laptop, and EV batteries with lighter and faster-charging ones…
Needs to be an option to put these into todays EVs. You shouldn’t have to buy a brand new car to get better battery technology.
Today’s EV’s batteries will already outlast the car.
Uhh do what? You’re assuming the cars last less than 10 years? Who are these people throwing away cars after such a short time?
It really depends on where you live. There are some parts of the world where environmental factors like ocean humidity or winter road salting will cause a car’s frame to rust through in a few years if you’re not careful. Look up the Rust Belt for an example.
On the other hand, if you live somewhere warm and dry, your car’s frame and body will outlast its original mechanical components.
“Rust Belt” isn’t literal, it refers to an area of the US where industrial manufacturing declined significant in the second half of the 20th century. It’s called that in part at least because its previous moniker was “Steel Belt”.
No that’s just proper maintenance… allowing salt to sit on the car constantly is not keeping up with maintenance.
Also as the other user has stated rust belt has nothing to do with cars rusting.
I read about a survey that found Tesla batteries were still at an average 85% health after 250k miles. Not bad at at all
That’s a good thing.
I think you’re talking about batteries from nearly 15 years ago, which did degrade significantly with age and/or use. There has been a significant and noticeable improvement since then. The person you were taking to did say today’s batteries.
Even then the batteries should not outlast the car. That’s insane.
When did you last lose a car to engine failure? Electronics, gears, suspension, stuff like that, but not the engine. They have to over engineer the battery because the earlier popular electric cars had bad batteries and they have to over-compensate. Hence today’s batteries.
Engine failure doesn’t mean the car is done. You can rebuild engines for a 1/10th of the cost of another car. The engine is not the only thing that makes a car a car. Just like batteries should not be the only thing that makes an electric car a electric car.
Yes. The person I was replying to thought it was somehow bad for the battery to outlast the car. I was making the point that that’s fine. In response to your point about the cost of an engine, I should say that batteries are a far bigger part of the cost of an electric car - it’s really just not very complicated apart from that - very few moving parts indeed compared to a combustion engine. That’s why the car companies aren’t very keen - unless they make their own batteries, they’re not adding as much value when they manufacture them. They prefer to push the hybrids which have the complexity of both and a lot less battery capacity (but very much don’t have the advantages of both for the driver).
They outlast the car, but don’t have the range and take too long to charge, that’s the problem, not the longevity.
Wait, are EV batteries even replaceable?
Not this one. It’s 600 miles long
I like this comment, because Samsung in other areas does indeed get confused about batteries being consumable.
Like their shitty phones. Even the bootloader tyrant huawei has pull-tabs. And of course their phone with the self-destruct feature.
Yes
TL;DR: Depends on what you mean.
Long version:
Disclaimer: I’m not an expert by any means, I haven’t vetted the links properly (or at all), they’re mostly there for illustration and if you want to read further. Also, the last time I actually read up on this is quite some years ago, so stuff may have changed in the industry and/or my memory on specifics is foggy. Many of the links lead to Tesla sources since I first looked into this topic back before Musk made it known to the public that he’s an insufferable human being.
Batteries are usually structurally integrated into the chassis with modern EVs, since that means space (and often small weight) savings, and is easier/faster to do in manufacturing.
With that knowledge, it is safe to assume that replacing a car’s battery is a difficult or next to impossible task, outside of end-of-life reuse.
But this is actually where it gets interesting, since EV batteries last many years anyways: What happens when the car’s time has come?
Well… the batteries can be reused. It’s not a trivial process, there’s several ways to do it, but the best intuitive explanation I’ve found is this: In raw ore, lithium and other metals are present at maybe 0.1 or 1%, per tonne of material. In batteries, it’s maybe 99% of reusable, expensive material. Even if you let it be 90 due to inefficiencies in recovery, or whatever, it’ll still make way more sense financially to work with old batteries – once you have the process figured out and automated machinery to get it done in place.
All that is assuming total destruction of the existing cells, which, depending on their state, may not even be necessary at all. In fact, it looks like all of that may not be needed for as much as >80% of batteries. Wow!
And we all know the best way to ensure companies are doing something is if the financial aspect aligns with their goals. It’s in their best self-interest to be able to and actually do this.
So: Replaceability per car – eh, doesn’t look to great. Replaceability across the industry? Perfect.
Great, now car manufacturers need to figure out how they can make it stop holding charge at 10years.
I mean, the headline does say 20 years soooo…
Also, Teslas are approaching 10 years old and as far as I know their batteries are still going strong (yes, I know their quality control is otherwise sketchy). The Nissan Leaf batteries are getting pretty sketchy, but they don’t have any battery conditioning - just air-cooled. That’s not doing longevity any favors. All other major EVs have battery management systems and seem to be holding up ok. They’re also generally warranted for 8 years. I don’t think they’d only have a 2-year buffer between warranty and expected life.
Not to worry, there’s lots of other parts they can cheap out on.
Aaaaaaand (deep breath)
Bullshit
At first I thought, damn a 600 mile battery. That’s a big battery.
Thankfully solid state batteries save 30-50% weight compared to current ones so batteries can be a bit smaller than they otherwise would be. This one will likely be 150 kWh.